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Maximal force exerted by a molecular motor

Zbigniew Koza*
Institute of Theoretical Physics, University of Wrocław, plac Maxa Borna 9, 50204 Wrocław, Poland

~Received 28 June 2001; published 12 February 2002!

We consider a particle diffusing in a one-dimensional periodic lattice with arbitrary transition rates between
nearest-neighbor sites. We show rigorously that the ratio of the drift velocityV to the diffusion coefficientD
has the upper bound 2N/d, whereN is the number of nodes in an elementary cell andd denotes its length.
Applying this result to a model of a molecular motor introduced by Fisher and Kolomeisky@Proc. Natl. Acad.
Sci. USA96, 6597~1999!# we show that the so called Einstein force, which sets the lower bound for the force
exerted by a molecular motor, is bounded from above by 2kBTN/d irrespective of the actual values of the jump
rates between internal states of the motor.

DOI: 10.1103/PhysRevE.65.031905 PACS number~s!: 87.16.Nn, 05.10.Gg, 05.40.2a
ns
o

ar
o
-
ca
er
e
all
na

o
n
n
f
m
di
ro
a

ica

m

iti

est-

or
his

-
-
ha-

on

so
s

e-
.e.,
lso
-
en-

the
are

e

I. INTRODUCTION

Molecular motors are complex proteins, e.g., kinesi
myosins, or dyneins, responsible for dynamical functions
biological cells, including muscle contraction, intracellul
transport, and flagellar motion. Powered by hydrolysis
ATP ~adenosine triphosphate!, they move along complemen
tary protein fibers, which are made up of many identi
monomers. Only microfibers comprised of polar monom
~e.g., of actin or tubulin! can contribute to transport. Th
tracks molecular motors move along are thus periodic
modulated, asymmetric, and effectively one-dimensio
structures@1,2#.

An important effort toward developing a general theory
the force exerted by a single protein motor was made i
series of recent papers@3–6#. It is based on the assumptio
that the motion of a motor can be modeled as diffusion o
particle in a one-dimensional lattice with periodic and asy
metric transition rates. The lattice nodes correspond to
ferent internal states and locations of a kinesin on a mic
tubule. A segment of a microtubule corresponds to
elementary cell of the lattice—we will denote its length asd.
The number of sites in an elementary cell,N, is equal to the
number of different internal states in a full mechanochem
cycle of a motor. For kinesind58 nm @1,7,8# and N54
@3,4,6#. Transitions between lattice nodes are assumed
constitute a Poisson process, so the time and displace
are, respectively, continuous and discrete variables.

For such a system one can construct several quant
approximating the force exerted by the motor@3,4#. Here we
will focus on the so called Einstein forceFE . It is related to
the drift velocityV and the mobilityb of the motor through
the formulaV5bFE . Following the Einstein relation one
has b5D/kBT, whereD is the diffusion coefficient of the
motor,T denotes temperature, andkB is the Boltzmann con-
stant. ThereforeFE can be expressed simply as@3,4#

FE5kBT
uVu
D

. ~1!
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Using this definition Fisher and Kolomeisky@3,4# suggested
that for any system with transitions restricted to the near
neighbor sites only

FE<2kBT
N

d
, ~2!

which, using Eq.~1!, can be written as

22N

d
D<V<

2N

d
D, ~3!

and proved it rigorously forN52. In our recent paper@9# we
reported a ‘‘computer-assisted’’ proof of this inequality f
N<16. The purpose of our present paper is to prove t
hypothesis analytically for anyN and arbitrary values of
transition rates.

Equation~3! also sets a relation betweenN and an experi-
mentally measured quantity, the randomnessr 52D/Vd
@8,10#, for it implies

N>1/r . ~4!

This relation, which was originally derived only for unidirec
tional, N-step sequential processes@10#, can be used to esti
mate the minimal number of steps comprising a full mec
nochemical cycle@6#.

As can be readily verified, the inequality~2! turns into an
equality if the motor moves all the time in the same directi
and all transition rates are of the same magnitude@4#. We
show that this condition is not only satisfactory, but al
necessary to turn~2! into an equality. This result correspond
to recent findings of Oster and Wang@11#, who argue that
rotary motors~e.g.,F1 ATPase rotors! are most efficient in
transducing the chemical energy of ATP hydrolysis into m
chanical work if the torque they generate is constant, i
independent of the rotation angle. A similar result was a
obtained by Quian@12#, who considered a continuous sto
chastic model for molecular motors and showed that the
tropy production rate, or the dissipated heat, is minimal if
stochastic process is unidirectional and all transition rates
of the same magnitude.

Finally, apart from having a direct application in th
theory of molecular motors, inequality~3! is interestingper
©2002 The American Physical Society05-1
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se, for it implies that a nonvanishing drift in an arbitrar
one-dimensional diffusive Poissonian system impose
lower bound for the dispersion.

As relation~3! is supposed to be valid for any periodN
and arbitrary choice of transition rates, to prove it one sho
be able to representV and D as functions of the transition
rates. Once such a representation has been found, the ta
proving inequality~3! reduces to a purely algebraic problem
General methods of expressingV andD in a nonequilibrium
system were found by Derrida@13# and Claes and Van de
Broeck @14#. One problem with these solutions is that th
are relatively complex and we did not find a way to empl
them to prove~3! for arbitrary N.

In our recent paper@15# we proposed a different approac
and using it we were able to expressV andD in terms of a
few multivariate polynomials such that each of their ter
can be represented as a directed graph@9#. As we shall see,
this representation turns out to be crucial to our proof, a
enables one to reduce the original problem to a gra
counting one.

The paper is organized as follows. In Sec. II we prese
mathematical definition of the model. Section II contains
proof of Eq.~3!, and Sec. IV is devoted to the discussion
our results. Finally, in the Appendix we clarify some tech
cal details of the proof.

II. MODEL

We consider a one-dimensional lattice with its sites
cated atxn , nPZ. At time t50 we put a particle at sitex0
50. The particle can then jump between the neare
neighbor lattice sites. Transitions are assumed to repres
continuous~Poisson! process in time governed by the mas
equation

]P~n,t !

]t
5kn21

1 P~n21,t !1kn11
2 P~n11,t !2~kn

1

1kn
2!P~n,t !, ~5!

whereP(n,t) denotes the probability of finding the partic
at site xn at time t and kn

6>0 are the~constant in time!
transition rates from a sitexn to xn61. We assume that the
system is periodic in space with a periodN>1 and a lattice
constantd.0, i.e., for eachn there is

kn
15kn1N

1 , kn
25kn1N

2 , ~6!

xn1N2xn5d. ~7!

We do not demand that the distances between consec
lattice sites,xn112xn , should be all equal to each other. O
goal is to prove Eq.~3! for any choice ofkn

1 andkn
2

III. PROOF OF EQ. „3…

The diffusion coefficientD remains unchanged and th
drift velocity V changes its sign under the mirror-reflectio
symmetry corresponding to exchangingkj

1 with k2 j
2 . Using

this natural symmetry we thus conclude that each of the
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relations in Eq.~3! implies the other one. Therefore we wi
restrict our consideration to the caseV>0 and prove only
that

V<
2N

d
D. ~8!

In accordance with the findings of Ref.@15#,

V5
d~P12P2!

c1
, ~9!

D5
d2~P11P2!22c2V2

2c1
, ~10!

where

P1[ )
j 50

N21

kj
1 , P2[ )

j 50

N21

kj
2 , ~11!

andc1 ,c2 are polynomials given by

cl5 (
$g j

1%,$g j
2%

)
m,n50

N21

~km
1!gm

1

~kn
2!gn

2

c l~$g j
1%,$g j

2%!,

~12!

where

gm
6P$0,1%, ~13!

l P$1,2%, and c l($g j
1%,$g j

2%)50 if at least one of the fol-
lowing conditions is satisfied:

(
m50

N21

~gm
11gm

2!ÞN2 l , ~14!

gm
15gm

251, ' m, ~15!

gm
15gm11

2 51, ' m; ~16!

otherwise,c($g j
1%,$g j

2%)51. The functionsc l($g j
1%,$g j

2%)
are a type of characteristic function that eliminates from E
~12! any combination of exponentsgm

6 which does not sat-
isfy conditions~14!–~16!. It can be shown thatc1 consists of
N2 and c2 of N2(N221)/12 terms, so even for modera
values ofN these polynomials are quite complicated.

Our strategy is simple. We shall consider the subset of
parameter space$k0

2 , . . . ,kN21
2 ,k0

1 , . . . ,kN21
1 % for which

the velocityV assumes a given value and try to find in it th
point (k̃0

2 , . . . ,k̃N21
2 ,k̃0

1 , . . . ,k̃N21
1 ) at which the diffusion

coefficientD attains the smallest value. We will show that
such a pointk̃ j

250 for all j. It will then suffice to prove Eq.
~8! only for this restricted parameter subspace, and this
be carried out explicitly.

First of all notice that, ifkj
150 for somej, thenV<0 and

Eq. ~8! is satisfied trivially, for the diffusion constantD is
nonnegative by definition. Henceforth we shall thus rest
our consideration to the case
5-2
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kj
1.0, ; j . ~17!

Suppose, for a while, that except fork0
1 andk0

2 , all other
transition rates are fixed. Definitions~12! and~13! imply that
c1 and c2 are linear ink0

2 and k0
1 , while Eq. ~15! ensures

that none of their terms contains bothk0
2 and k0

1 . In other
words,

c15w1
1k0

11w1
2k0

21w1
0 , ~18!

c25w2
1k0

11w2
2k0

21w2
0 , ~19!

wherewl
6[]cl /]k0

6 andwl
0[cl uk

0
650 are some multivariate

polynomials in k1
2 , . . . ,kN21

2 ,k1
1 , . . . ,kN21

1 , independent
of k0

2 andk0
1 ( l 51,2). For example, forN53 there isw1

1

5k2
21k2

11k1
1 , w1

25k2
21k1

21k1
1 , w1

05k1
2k2

21k1
2k2

1

1k1
1k2

1 , w2
15w2

251, andw2
05k1

21k2
21k1

11k2
1 . Condi-

tion ~17! guarantees that

c1.0, w1
0.0. ~20!

Let us now vary k0
1 and k0

2 in such a way that
V(k0

2 ,k0
1)5const. This means that

dV5
]V

]k0
2

dk0
21

]V

]k0
1

dk0
150, ~21!

which, in turn, implies

dD5S ]V

]k0
1D 21S ]D

]k0
2

]V

]k0
1

2
]D

]k0
1

]V

]k0
2D dk0

2 . ~22!

Using Eqs.~9!, ~18!, and~20! we find that]V/]k0
1.0 and

c1
5

d3 S ]D

]k0
2

]V

]k0
1

2
]D

]k0
1

]V

]k0
2D 5w1

0P18 P28 ~c1!21@P18 ~w1
2w2

0

2w1
0w2

2!1P28 ~w1
1w2

0

2w1
0w2

1!#~P12P2!2, ~23!

where P18 [) j 51
N21kj

15P1 /k0
1 and P28 [) j 51

N21kj
2 . In the

Appendix we show that

w1
2w2

0>w1
0w2

2 , ~24!

w1
1w2

0>w1
0w2

1 . ~25!

Consequently,

dD

dk0
2

>0. ~26!

Therefore, for anyk0
1 ,k0

2.0 there existsk̃0
1.0 such that

V(k0
2 ,k0

1)5V(0,k̃0
1) andD(k0

2 ,k0
1)>D(0,k̃0

1).
Applying the same reasoning in turn for sitesj

50, . . . ,N21 we conclude that for any particular choice
03190
transition ratesk0
2 , . . . ,kN21

2 ,k0
1 , . . . ,kN21

1 there must ex-

ist non-negative numbersk̃0
1 , . . . ,k̃N21

1 such that

V~k0
2 , . . . ,k0

1 , . . . ,kN21
1 !5V~0, . . . ,k̃0

1 , . . . ,k̃N21
1 !,

D~k0
2 , . . . ,k0

1 , . . . ,kN21
1 !>D~0, . . . ,k̃0

1 , . . . ,k̃N21
1 !.

It thus suffices to prove Eq.~8! only in a particular case
where allkj

2 vanish. Assumingkj
250, ; j we arrive at

c15P1 (
j 50

N21
1

kj
1

, ~27!

c25P1 (
j 50

N22

(
l 5 j 11

N21
1

kj
1kl

1
, ~28!

andP250. Finally, by using Eqs.~9! and ~10! this implies

V2
2N

d
D5dP1

2Nc2P12~N21!~c1!2

~c1!3

5sF2N (
0< j , l ,N

1

kj
1kl

1
2~N21!S (

j 50

N
1

kj
1D 2G

52s (
0< j , l ,N

S 1

kj
1

2
1

kl
1D 2

<0, ~29!

where we used a shorthand notations[d(P1 /c1)3.0. Not
only does this inequality complete the proof of Eq.~8!, but it
also tells us thatV/D assumes its maximal value 2N/d if and
only if all kj

2 vanish and allkj
1 are positive and equal to

each other.

IV. CONCLUSIONS

We have rigorously proved that the maximal value of t
Einstein forceFE is 2kBTN/d, whereN is the number of
distinct internal states~conformations! of a motor protein in
a full mechanochemical cycle,d denotes the segment leng
of a microtubule,T is the temperature, andkB is the Boltz-
mann constant. We showed that this maximal value is
tained if and only if all transitions are unidirectional and
the same magnitude. We also showed that the randomner
satisfies the relationr .1/N.

Although our approach is valid for any value ofN and an
arbitrary choice of transition rates, it still refers to a simp
fied situation. First, we assumed that the motion of a mo
protein can be reduced to diffusion of a Brownian particle
a linear chain of lattice nodes, and other topologies dese
at least equal attention@2,16–19#. Second, we assumed th
the transitions constitute a Poisson process. Although
hypothesis is confirmed by recent experiments on myo
@20#, it is well known that transition rates with other prob
ability density functions may lead to completely differe
upper bounds forFE @3–6,19#. Third, our formula depends
on N, which is not known exactly. Finally, we consider
single motor, while many real protein motors work colle
5-3
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tively @1,2#. Nevertheless, the force calculated using all th
approximations (4.3 pN) agrees quite well with the expe
mental value of the stalling forceFs for kinesin ~different
experimental techniques yieldedFs;4 –8 pN @1#!. Further
work is, of course, required to clarify the relevance of t
above-mentioned problems.

Last, but not least, our proof implies that a nonvanish
drift in an arbitrary one-dimensional diffusive Poissoni
system imposes the lower bound for the dispersion.
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APPENDIX: PROOF OF EQS. „24… AND „25…

The mirror-reflection symmetry, as described at the beg
ning of Sec. II, maps Eq.~24! onto Eq.~25! and vice versa.
Therefore, it suffices to prove only one of them, say Eq.~25!.

To prove Eq.~25! we need a more detailed description
the dependence of polynomialsc1 and c2 on the transition
rateskj

6 , j 50, . . . ,N21. A convenient description is pro
vided by a graphical representation@9#, where each term o

cl , l 51,2, which is of the form) j 50
N21(kj

2)g j
1

(kj
1)g j

2

, corre-
sponds to an oriented graph spanned on a~regular! polygon
with N nodes labeled 0, . . . ,N21. The graph is constructe
in such a way that wheneverg j

251 we draw an arrow from
node j to j 21(modN), and wheneverg j

151 we draw an
arrow from j to j 11(modN). Conditions~13!–~16! imply
that there is a one-to-one correspondence between the t
of cl , l 51,2, and the set of all graphs drawn according to
following rules: ~1! Draw all but l sides of the polygon;~2!
replace each drawn side with an arrow in such a way that
each node there is at most one arrow starting at it. The
step is associated with conditions~13!, ~14!, and~16!, while
the second step is related to condition~15!. An example of a
graph corresponding to a termk0

1k1
1k2

1k4
2k5

2k6
2k7

1 of c1 for
N58 is given in Fig. 1.

Note that, by definition, if an arrow is drawn along a si
( j , j 11) in a clockwise direction~which corresponds to a
term kj

1), the preceding side (j 21,j ) must be either empty
or occupied by another arrow pointing clockwise (kj 21

1 ).

FIG. 1. The graph corresponding to a termh1(6,3)
5k0

1k1
1k2

1k4
2k5

2k6
2k7

1 of c1 (N58).
03190
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Similarly, a counterclockwise arrow starting at a nodej ~cor-
responding tokj

2) must be followed by either an empty sid
or a side occupied by another counterclockwise arr
(kj 11

2 ). Therefore in each term ofcl , l 51,2, there are ex-
actly l empty bonds interlaced with exactlyl nodes that are
not the source of an arrow. Consequently, each term ofc1 is
uniquely given by specifying two nodes: one, saym, such
that the side (m,m11) is empty and the other one, says,
which is not a source of an arrow. In the example depicted
Fig. 1, m56 and s53. We will denote such a term by
h1(m,s). Clearly,

h1~m,s![ ) 8
j 5m11

s21

kj
1 ) 8

j 5s11

m

kj
2 , ~A1!

where)8 denotes a special product defined so as to take
account the periodic nature of a polygon:

) 8
j 5n

m

kj
6[1, if m11[n~mod N!; ~A2!

otherwise,

) 8
j 5n

m

kj
6[5 )

j 5n

m

kj
6 , n<m,

)
j 5n

N21

kj
6)

j 50

m

kj
6 , n.m,

~A3!

where 0<n,m<N21. In other words, for any functionf
defined on the nodes of the polygon,)8 j 5n

m f ( j ) is a product
of all f ( j ) associated with nodesj lying between nodesn and
m in the clockwise direction; however, if this would mea
that all nodes should be taken into this product, th
)8 j 5n

m f ( j )[1. Thus, for example, h1(0,0)
5k1

1k2
1
•••kN21

1 , h1(0,1)5k2
2k3

2
•••kN21

2 k0
2 , and h1(0,2)

5k1
1k3

2k4
2
•••kN21

2 k0
2 . Using the polynomialsh1(m,s) we

can rewritec1 as

c15 (
m50

N21

(
s50

N21

h1~m,s!. ~A4!

Similarly, each term ofc2 corresponds uniquely to a
graph containing exactly two empty sides and two nodes
do not start an arrow. Each term ofc2 is thus a product of the
form

h2~m,s;n,t ![ ) 8
j 5m11

s21

kj
1 ) 8

j 5s11

n

kj
2 ) 8

j 5n11

t21

kj
1 ) 8

j 5t11

m

kj
2,

~A5!

where the order of the nodesm, s, n, and t on the polygon
must satisfy the following condition: if we start movin
along the nodes of the polygon in the clockwise directio
then fromm we must first go tos, then tonÞm, then tot,
and finally return tom. This guarantees that each polynom
h2(m,s;n,t) is actually a product of exactlyN22 transition
rateskj

6 .
5-4
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The polynomialsw1
0 , w1

1 , w2
0, andw2

1 satisfy the follow-
ing relations:

w1
05 (

m50

N21

h1~m,0!, ~A6!

k0
1w1

15 (
m51

N21

(
s51

m

h1~m,s!, ~A7!

w2
05 (

m51

N21

(
n50

m21

(
t5n11

m

h2~m,0;n,t !, ~A8!

k0
1w2

15 (
m52

N21

(
n51

m21

(
s51

n

(
t5n11

m

h2~m,s;n,t !. ~A9!

Each term of the productk0
1w1

0w2
1 is thus of the form

h1( l ,0)h2(m,s;n,t), where 1<s<n,t<m<N21 and 0
< l<N21. Similarly, each term of the productk0

1w2
0w1

1 is
on

i.

i.

tl.

ci

03190
of the formh1( l ,s)h2(m,0;n,t), where 0<n,t<m<N21
and 0< l<N21. Using the explicit form ofh1 andh2 @see
Eqs.~A1! and ~A5!#, one can verify that

h1~ l ,0!h2~m,s;n,t !5H h1~n,s!h2~m,0;l ,t !, l ,t,

h1~ l ,s!h2~m,0;n,t !, l>t.
~A10!

We thus see that each term ofk0
1w1

0w2
1 @the left-hand side

~LHS!, of Eq.~A10!# can be mapped onto a term ofk0
1w2

0w1
1

@RHS of Eq.~A10!#. This mapping is an injection: if it maps
some h1(x1,0)h2(x2 ,x3 ;x4 ,x5) on some
h1( l ,s)h2(m,0;n,t), then evidentlyx25m, x35s, x55t,
and for l>t there isx15 l , x45n, while for l ,t there is
x15n, x45 l . In each casex1 , . . . ,x5 can be determined
uniquely if l, s, m, n, andt are known.

The fact that Eq.~A10! defines an injection implies tha
k0

1w1
0w2

1<k0
1w2

0w1
1 , which completes the proof of Eq.~25!.
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