Maximal force exerted by a molecular motor

Zbigniew Koza*
Institute of Theoretical Physics, University of Wrocław, plac Maxa Borna 9, 50204 Wrocław, Poland

(Received 28 June 2001; published 12 February 2002)

Abstract

We consider a particle diffusing in a one-dimensional periodic lattice with arbitrary transition rates between nearest-neighbor sites. We show rigorously that the ratio of the drift velocity V to the diffusion coefficient D has the upper bound $2 N / d$, where N is the number of nodes in an elementary cell and d denotes its length. Applying this result to a model of a molecular motor introduced by Fisher and Kolomeisky [Proc. Natl. Acad. Sci. USA 96, 6597 (1999)] we show that the so called Einstein force, which sets the lower bound for the force exerted by a molecular motor, is bounded from above by $2 k_{B} T N / d$ irrespective of the actual values of the jump rates between internal states of the motor.

DOI: 10.1103/PhysRevE.65.031905
PACS number(s): 87.16.Nn, 05.10.Gg, 05.40.-a

I. INTRODUCTION

Molecular motors are complex proteins, e.g., kinesins, myosins, or dyneins, responsible for dynamical functions of biological cells, including muscle contraction, intracellular transport, and flagellar motion. Powered by hydrolysis of ATP (adenosine triphosphate), they move along complementary protein fibers, which are made up of many identical monomers. Only microfibers comprised of polar monomers (e.g., of actin or tubulin) can contribute to transport. The tracks molecular motors move along are thus periodically modulated, asymmetric, and effectively one-dimensional structures [1,2].

An important effort toward developing a general theory of the force exerted by a single protein motor was made in a series of recent papers [3-6]. It is based on the assumption that the motion of a motor can be modeled as diffusion of a particle in a one-dimensional lattice with periodic and asymmetric transition rates. The lattice nodes correspond to different internal states and locations of a kinesin on a microtubule. A segment of a microtubule corresponds to an elementary cell of the lattice-we will denote its length as d. The number of sites in an elementary cell, N, is equal to the number of different internal states in a full mechanochemical cycle of a motor. For kinesin $d=8 \mathrm{~nm}[1,7,8]$ and $N=4$ [3,4,6]. Transitions between lattice nodes are assumed to constitute a Poisson process, so the time and displacement are, respectively, continuous and discrete variables.

For such a system one can construct several quantities approximating the force exerted by the motor [3,4]. Here we will focus on the so called Einstein force F_{E}. It is related to the drift velocity V and the mobility b of the motor through the formula $V=b F_{E}$. Following the Einstein relation one has $b=D / k_{B} T$, where D is the diffusion coefficient of the motor, T denotes temperature, and k_{B} is the Boltzmann constant. Therefore F_{E} can be expressed simply as $[3,4]$

$$
\begin{equation*}
F_{E}=k_{B} T \frac{|\mathbf{V}|}{D} \tag{1}
\end{equation*}
$$

[^0]Using this definition Fisher and Kolomeisky [3,4] suggested that for any system with transitions restricted to the nearestneighbor sites only

$$
\begin{equation*}
F_{E} \leqslant 2 k_{B} T \frac{N}{d} \tag{2}
\end{equation*}
$$

which, using Eq. (1), can be written as

$$
\begin{equation*}
\frac{-2 N}{d} D \leqslant V \leqslant \frac{2 N}{d} D \tag{3}
\end{equation*}
$$

and proved it rigorously for $N=2$. In our recent paper [9] we reported a "computer-assisted" proof of this inequality for $N \leqslant 16$. The purpose of our present paper is to prove this hypothesis analytically for any N and arbitrary values of transition rates.

Equation (3) also sets a relation between N and an experimentally measured quantity, the randomness $r=2 D / V d$ [8,10], for it implies

$$
\begin{equation*}
N \geqslant 1 / r \tag{4}
\end{equation*}
$$

This relation, which was originally derived only for unidirectional, N-step sequential processes [10], can be used to estimate the minimal number of steps comprising a full mechanochemical cycle [6].

As can be readily verified, the inequality (2) turns into an equality if the motor moves all the time in the same direction and all transition rates are of the same magnitude [4]. We show that this condition is not only satisfactory, but also necessary to turn (2) into an equality. This result corresponds to recent findings of Oster and Wang [11], who argue that rotary motors (e.g., F_{1} ATPase rotors) are most efficient in transducing the chemical energy of ATP hydrolysis into mechanical work if the torque they generate is constant, i.e., independent of the rotation angle. A similar result was also obtained by Quian [12], who considered a continuous stochastic model for molecular motors and showed that the entropy production rate, or the dissipated heat, is minimal if the stochastic process is unidirectional and all transition rates are of the same magnitude.

Finally, apart from having a direct application in the theory of molecular motors, inequality (3) is interesting per
se, for it implies that a nonvanishing drift in an arbitrary one-dimensional diffusive Poissonian system imposes a lower bound for the dispersion.

As relation (3) is supposed to be valid for any period N and arbitrary choice of transition rates, to prove it one should be able to represent V and D as functions of the transition rates. Once such a representation has been found, the task of proving inequality (3) reduces to a purely algebraic problem. General methods of expressing V and D in a nonequilibrium system were found by Derrida [13] and Claes and Van den Broeck [14]. One problem with these solutions is that they are relatively complex and we did not find a way to employ them to prove (3) for arbitrary N.

In our recent paper [15] we proposed a different approach, and using it we were able to express V and D in terms of a few multivariate polynomials such that each of their terms can be represented as a directed graph [9]. As we shall see, this representation turns out to be crucial to our proof, as it enables one to reduce the original problem to a graphcounting one.

The paper is organized as follows. In Sec. II we present a mathematical definition of the model. Section II contains the proof of Eq. (3), and Sec. IV is devoted to the discussion of our results. Finally, in the Appendix we clarify some technical details of the proof.

II. MODEL

We consider a one-dimensional lattice with its sites located at $x_{n}, n \in \mathcal{Z}$. At time $t=0$ we put a particle at site x_{0} $=0$. The particle can then jump between the nearestneighbor lattice sites. Transitions are assumed to represent a continuous (Poisson) process in time governed by the master equation

$$
\begin{align*}
\frac{\partial P(n, t)}{\partial t}= & k_{n-1}^{+} P(n-1, t)+k_{n+1}^{-} P(n+1, t)-\left(k_{n}^{+}\right. \\
& \left.+k_{n}^{-}\right) P(n, t), \tag{5}
\end{align*}
$$

where $P(n, t)$ denotes the probability of finding the particle at site x_{n} at time t and $k_{n}^{ \pm} \geqslant 0$ are the (constant in time) transition rates from a site x_{n} to $x_{n \pm 1}$. We assume that the system is periodic in space with a period $N \geqslant 1$ and a lattice constant $d>0$, i.e., for each n there is

$$
\begin{gather*}
k_{n}^{+}=k_{n+N}^{+}, \quad k_{n}^{-}=k_{n+N}^{-}, \tag{6}\\
x_{n+N}-x_{n}=d . \tag{7}
\end{gather*}
$$

We do not demand that the distances between consecutive lattice sites, $x_{n+1}-x_{n}$, should be all equal to each other. Our goal is to prove Eq. (3) for any choice of k_{n}^{+}and k_{n}^{-}

III. PROOF OF EQ. (3)

The diffusion coefficient D remains unchanged and the drift velocity V changes its sign under the mirror-reflection symmetry corresponding to exchanging k_{j}^{+}with k_{-j}^{-}. Using this natural symmetry we thus conclude that each of the two
relations in Eq. (3) implies the other one. Therefore we will restrict our consideration to the case $V \geqslant 0$ and prove only that

$$
\begin{equation*}
V \leqslant \frac{2 N}{d} D \tag{8}
\end{equation*}
$$

In accordance with the findings of Ref. [15],

$$
\begin{gather*}
V=\frac{d\left(P_{+}-P_{-}\right)}{c_{1}} \tag{9}\\
D=\frac{d^{2}\left(P_{+}+P_{-}\right)-2 c_{2} V^{2}}{2 c_{1}}, \tag{10}
\end{gather*}
$$

where

$$
\begin{equation*}
P_{+} \equiv \prod_{j=0}^{N-1} k_{j}^{+}, \quad P_{-} \equiv \prod_{j=0}^{N-1} k_{j}^{-}, \tag{11}
\end{equation*}
$$

and c_{1}, c_{2} are polynomials given by

$$
\begin{equation*}
c_{l}=\sum_{\left\{\gamma_{j}^{+}\right\},\left\{\gamma_{j}^{-}\right\}} \prod_{m, n=0}^{N-1}\left(k_{m}^{+}\right) \gamma_{m}^{+}\left(k_{n}^{-}\right)^{\gamma_{n}^{-}} \psi_{l}\left(\left\{\gamma_{j}^{+}\right\},\left\{\gamma_{j}^{-}\right\}\right), \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{m}^{ \pm} \in\{0,1\} \tag{13}
\end{equation*}
$$

$l \in\{1,2\}$, and $\psi_{l}\left(\left\{\gamma_{j}^{+}\right\},\left\{\gamma_{j}^{-}\right\}\right)=0$ if at least one of the following conditions is satisfied:

$$
\begin{align*}
& \sum_{m=0}^{N-1}\left(\gamma_{m}^{+}+\gamma_{m}^{-}\right) \neq N-l, \tag{14}\\
& \gamma_{m}^{+}=\gamma_{m}^{-}=1, \quad \exists m \tag{15}\\
& \gamma_{m}^{+}=\gamma_{m+1}^{-}=1, \quad \exists m \tag{16}
\end{align*}
$$

otherwise, $\psi\left(\left\{\gamma_{j}^{+}\right\},\left\{\gamma_{j}^{-}\right\}\right)=1$. The functions $\psi_{l}\left(\left\{\gamma_{j}^{+}\right\},\left\{\gamma_{j}^{-}\right\}\right)$ are a type of characteristic function that eliminates from Eq. (12) any combination of exponents $\gamma_{m}^{ \pm}$which does not satisfy conditions (14)-(16). It can be shown that c_{1} consists of N^{2} and c_{2} of $N^{2}\left(N^{2}-1\right) / 12$ terms, so even for moderate values of N these polynomials are quite complicated.

Our strategy is simple. We shall consider the subset of the parameter space $\left\{k_{0}^{-}, \ldots, k_{N-1}^{-}, k_{0}^{+}, \ldots, k_{N-1}^{+}\right\}$for which the velocity V assumes a given value and try to find in it the point $\left(\widetilde{k}_{0}^{-}, \ldots, \widetilde{k}_{N-1}^{-}, \widetilde{k}_{0}^{+}, \ldots, \widetilde{k}_{N-1}^{+}\right)$at which the diffusion coefficient D attains the smallest value. We will show that at such a point $\widetilde{k}_{j}^{-}=0$ for all j. It will then suffice to prove Eq. (8) only for this restricted parameter subspace, and this can be carried out explicitly.

First of all notice that, if $k_{j}^{+}=0$ for some j, then $V \leqslant 0$ and Eq. (8) is satisfied trivially, for the diffusion constant D is nonnegative by definition. Henceforth we shall thus restrict our consideration to the case

$$
\begin{equation*}
k_{j}^{+}>0, \quad \forall j \tag{17}
\end{equation*}
$$

Suppose, for a while, that except for k_{0}^{+}and k_{0}^{-}, all other transition rates are fixed. Definitions (12) and (13) imply that c_{1} and c_{2} are linear in k_{0}^{-}and k_{0}^{+}, while Eq. (15) ensures that none of their terms contains both k_{0}^{-}and k_{0}^{+}. In other words,

$$
\begin{align*}
& c_{1}=w_{1}^{+} k_{0}^{+}+w_{1}^{-} k_{0}^{-}+w_{1}^{0}, \tag{18}\\
& c_{2}=w_{2}^{+} k_{0}^{+}+w_{2}^{-} k_{0}^{-}+w_{2}^{0}, \tag{19}
\end{align*}
$$

where $w_{l}^{ \pm} \equiv \partial c_{l} / \partial k_{0}^{ \pm}$and $\left.w_{l}^{0} \equiv c_{l}\right|_{k_{0}^{ \pm}=0}$ are some multivariate polynomials in $k_{1}^{-}, \ldots, k_{N-1}^{-}, k_{1}^{+}, \ldots, k_{N-1}^{+}$, independent of k_{0}^{-}and $k_{0}^{+}(l=1,2)$. For example, for $N=3$ there is w_{1}^{+} $=k_{2}^{-}+k_{2}^{+}+k_{1}^{+}, \quad w_{1}^{-}=k_{2}^{-}+k_{1}^{-}+k_{1}^{+}, \quad w_{1}^{0}=k_{1}^{-} k_{2}^{-}+k_{1}^{-} k_{2}^{+}$ $+k_{1}^{+} k_{2}^{+}, w_{2}^{+}=w_{2}^{-}=1$, and $w_{2}^{0}=k_{1}^{-}+k_{2}^{-}+k_{1}^{+}+k_{2}^{+}$. Condition (17) guarantees that

$$
\begin{equation*}
c_{1}>0, \quad w_{1}^{0}>0 \tag{20}
\end{equation*}
$$

Let us now vary k_{0}^{+}and k_{0}^{-}in such a way that $V\left(k_{0}^{-}, k_{0}^{+}\right)=$const. This means that

$$
\begin{equation*}
d V=\frac{\partial V}{\partial k_{0}^{-}} d k_{0}^{-}+\frac{\partial V}{\partial k_{0}^{+}} d k_{0}^{+}=0 \tag{21}
\end{equation*}
$$

which, in turn, implies

$$
\begin{equation*}
d D=\left(\frac{\partial V}{\partial k_{0}^{+}}\right)^{-1}\left(\frac{\partial D}{\partial k_{0}^{-}} \frac{\partial V}{\partial k_{0}^{+}}-\frac{\partial D}{\partial k_{0}^{+}} \frac{\partial V}{\partial k_{0}^{-}}\right) d k_{0}^{-} \tag{22}
\end{equation*}
$$

Using Eqs. (9), (18), and (20) we find that $\partial V / \partial k_{0}^{+}>0$ and

$$
\begin{align*}
\frac{c_{1}^{5}}{d^{3}}\left(\frac{\partial D}{\partial k_{0}^{-}} \frac{\partial V}{\partial k_{0}^{+}}-\frac{\partial D}{\partial k_{0}^{+}} \frac{\partial V}{\partial k_{0}^{-}}\right)= & w_{1}^{0} P_{+}^{\prime} P_{-}^{\prime}\left(c_{1}\right)^{2}+\left[P _ { + } ^ { \prime } \left(w_{1}^{-} w_{2}^{0}\right.\right. \\
& \left.-w_{1}^{0} w_{2}^{-}\right)+P_{-}^{\prime}\left(w_{1}^{+} w_{2}^{0}\right. \\
& \left.\left.-w_{1}^{0} w_{2}^{+}\right)\right]\left(P_{+}-P_{-}\right)^{2}, \tag{23}
\end{align*}
$$

where $P_{+}^{\prime} \equiv \Pi_{j=1}^{N-1} k_{j}^{+}=P_{+} / k_{0}^{+}$and $P_{-}^{\prime} \equiv \Pi_{j=1}^{N-1} k_{j}^{-}$. In the Appendix we show that

$$
\begin{align*}
& w_{1}^{-} w_{2}^{0} \geqslant w_{1}^{0} w_{2}^{-}, \tag{24}\\
& w_{1}^{+} w_{2}^{0} \geqslant w_{1}^{0} w_{2}^{+} . \tag{25}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
\frac{d D}{d k_{0}^{-}} \geqslant 0 \tag{26}
\end{equation*}
$$

Therefore, for any $k_{0}^{+}, k_{0}^{-}>0$ there exists $\widetilde{k}_{0}^{+}>0$ such that $V\left(k_{0}^{-}, k_{0}^{+}\right)=V\left(0, \widetilde{k}_{0}^{+}\right)$and $D\left(k_{0}^{-}, k_{0}^{+}\right) \geqslant D\left(0, \widetilde{k}_{0}^{+}\right)$.

Applying the same reasoning in turn for sites j $=0, \ldots, N-1$ we conclude that for any particular choice of
transition rates $k_{0}^{-}, \ldots, k_{N-1}^{-}, k_{0}^{+}, \ldots, k_{N-1}^{+}$there must exist non-negative numbers $\widetilde{k}_{0}^{+}, \ldots, \widetilde{k}_{N-1}^{+}$such that

$$
\begin{aligned}
& V\left(k_{0}^{-}, \ldots, k_{0}^{+}, \ldots, k_{N-1}^{+}\right)=V\left(0, \ldots, \widetilde{k}_{0}^{+}, \ldots, \widetilde{k}_{N-1}^{+}\right), \\
& D\left(k_{0}^{-}, \ldots, k_{0}^{+}, \ldots, k_{N-1}^{+}\right) \geqslant D\left(0, \ldots, \widetilde{k}_{0}^{+}, \ldots, \widetilde{k}_{N-1}^{+}\right) .
\end{aligned}
$$

It thus suffices to prove Eq. (8) only in a particular case where all k_{j}^{-}vanish. Assuming $k_{j}^{-}=0, \forall j$ we arrive at

$$
\begin{gather*}
c_{1}=P_{+} \sum_{j=0}^{N-1} \frac{1}{k_{j}^{+}}, \tag{27}\\
c_{2}=P_{+} \sum_{j=0}^{N-2} \sum_{l=j+1}^{N-1} \frac{1}{k_{j}^{+} k_{l}^{+}}, \tag{28}
\end{gather*}
$$

and $P_{-}=0$. Finally, by using Eqs. (9) and (10) this implies

$$
\begin{align*}
V-\frac{2 N}{d} D & =d P_{+} \frac{2 N c_{2} P_{+}-(N-1)\left(c_{1}\right)^{2}}{\left(c_{1}\right)^{3}} \\
& =s\left[2 N \sum_{0 \leqslant j<l<N} \frac{1}{k_{j}^{+} k_{l}^{+}}-(N-1)\left(\sum_{j=0}^{N} \frac{1}{k_{j}^{+}}\right)^{2}\right] \\
& =-s \sum_{0 \leqslant j<l<N}\left(\frac{1}{k_{j}^{+}}-\frac{1}{k_{l}^{+}}\right)^{2} \leqslant 0 \tag{29}
\end{align*}
$$

where we used a shorthand notation $s \equiv d\left(P_{+} / c_{1}\right)^{3}>0$. Not only does this inequality complete the proof of Eq. (8), but it also tells us that V / D assumes its maximal value $2 N / d$ if and only if all k_{j}^{-}vanish and all k_{j}^{+}are positive and equal to each other.

IV. CONCLUSIONS

We have rigorously proved that the maximal value of the Einstein force F_{E} is $2 k_{B} T N / d$, where N is the number of distinct internal states (conformations) of a motor protein in a full mechanochemical cycle, d denotes the segment length of a microtubule, T is the temperature, and k_{B} is the Boltzmann constant. We showed that this maximal value is attained if and only if all transitions are unidirectional and of the same magnitude. We also showed that the randomness r satisfies the relation $r>1 / N$.

Although our approach is valid for any value of N and an arbitrary choice of transition rates, it still refers to a simplified situation. First, we assumed that the motion of a motor protein can be reduced to diffusion of a Brownian particle on a linear chain of lattice nodes, and other topologies deserve at least equal attention [2,16-19]. Second, we assumed that the transitions constitute a Poisson process. Although this hypothesis is confirmed by recent experiments on myosin [20], it is well known that transition rates with other probability density functions may lead to completely different upper bounds for F_{E} [3-6,19]. Third, our formula depends on N, which is not known exactly. Finally, we consider a single motor, while many real protein motors work collec-

FIG. 1. The graph corresponding to a term $h_{1}(6,3)$ $=k_{0}^{+} k_{1}^{+} k_{2}^{+} k_{4}^{-} k_{5}^{-} k_{6}^{-} k_{7}^{+}$of $c_{1} \quad(N=8)$.
tively [1,2]. Nevertheless, the force calculated using all these approximations (4.3 pN) agrees quite well with the experimental value of the stalling force F_{s} for kinesin (different experimental techniques yielded $F_{\mathrm{s}} \sim 4-8 \mathrm{pN}$ [1]). Further work is, of course, required to clarify the relevance of the above-mentioned problems.

Last, but not least, our proof implies that a nonvanishing drift in an arbitrary one-dimensional diffusive Poissonian system imposes the lower bound for the dispersion.

ACKNOWLEDGMENT

Support from the Polish KBN Grant No. 2 P03B 11919 is gratefully acknowledged.

APPENDIX: PROOF OF EQS. (24) AND (25)

The mirror-reflection symmetry, as described at the beginning of Sec. II, maps Eq. (24) onto Eq. (25) and vice versa. Therefore, it suffices to prove only one of them, say Eq. (25).

To prove Eq. (25) we need a more detailed description of the dependence of polynomials c_{1} and c_{2} on the transition rates $k_{j}^{ \pm}, j=0, \ldots, N-1$. A convenient description is provided by a graphical representation [9], where each term of $c_{l}, l=1,2$, which is of the form $\Pi_{j=0}^{N-1}\left(k_{j}^{-}\right)^{\gamma_{j}^{+}}\left(k_{j}^{+}\right)^{\gamma_{j}^{-}}$, corresponds to an oriented graph spanned on a (regular) polygon with N nodes labeled $0, \ldots, N-1$. The graph is constructed in such a way that whenever $\gamma_{j}^{-}=1$ we draw an arrow from node j to $j-1(\bmod N)$, and whenever $\gamma_{j}^{+}=1$ we draw an arrow from j to $j+1(\bmod N)$. Conditions (13)-(16) imply that there is a one-to-one correspondence between the terms of $c_{l}, l=1,2$, and the set of all graphs drawn according to the following rules: (1) Draw all but l sides of the polygon; (2) replace each drawn side with an arrow in such a way that for each node there is at most one arrow starting at it. The first step is associated with conditions (13), (14), and (16), while the second step is related to condition (15). An example of a graph corresponding to a term $k_{0}^{+} k_{1}^{+} k_{2}^{+} k_{4}^{-} k_{5}^{-} k_{6}^{-} k_{7}^{+}$of c_{1} for $N=8$ is given in Fig. 1.

Note that, by definition, if an arrow is drawn along a side $(j, j+1)$ in a clockwise direction (which corresponds to a term $\left.k_{j}^{+}\right)$, the preceding side $(j-1, j)$ must be either empty or occupied by another arrow pointing clockwise $\left(k_{j-1}^{+}\right)$.

Similarly, a counterclockwise arrow starting at a node j (corresponding to k_{j}^{-}) must be followed by either an empty side or a side occupied by another counterclockwise arrow $\left(k_{j+1}^{-}\right)$. Therefore in each term of $c_{l}, l=1,2$, there are exactly l empty bonds interlaced with exactly l nodes that are not the source of an arrow. Consequently, each term of c_{1} is uniquely given by specifying two nodes: one, say m, such that the side $(m, m+1)$ is empty and the other one, say s, which is not a source of an arrow. In the example depicted in Fig. $1, m=6$ and $s=3$. We will denote such a term by $h_{1}(m, s)$. Clearly,

$$
\begin{equation*}
h_{1}(m, s) \equiv \prod_{j=m+1}^{s-1} k_{j}^{+} \prod_{j=s+1}^{m} k_{j}^{-} \tag{A1}
\end{equation*}
$$

where Π^{\prime} denotes a special product defined so as to take into account the periodic nature of a polygon:

$$
\begin{equation*}
\prod_{j=n}^{m} k_{j}^{ \pm} \equiv 1, \quad \text { if } m+1 \equiv n(\bmod \mathrm{~N}) \tag{A2}
\end{equation*}
$$

otherwise,

$$
\prod_{j=n}^{m} k_{j}^{ \pm} \equiv \begin{cases}\prod_{j=n}^{m} k_{j}^{ \pm}, & n \leqslant m \tag{A3}\\ \prod_{j=n}^{N-1} k_{j}^{ \pm} \prod_{j=0}^{m} k_{j}^{ \pm}, & n>m\end{cases}
$$

where $0 \leqslant n, m \leqslant N-1$. In other words, for any function f defined on the nodes of the polygon, $\Pi_{j=n}^{\prime m} f(j)$ is a product of all $f(j)$ associated with nodes j lying between nodes n and m in the clockwise direction; however, if this would mean that all nodes should be taken into this product, then $\Pi_{j=n}^{\prime m} f(j) \equiv 1$. Thus, for example, $h_{1}(0,0)$ $=k_{1}^{+} k_{2}^{+} \cdots k_{N-1}^{+}, h_{1}(0,1)=k_{2}^{-} k_{3}^{-} \cdots k_{N-1}^{-} k_{0}^{-}$, and $h_{1}(0,2)$ $=k_{1}^{+} k_{3}^{-} k_{4}^{-} \cdots k_{N-1}^{-} k_{0}^{-}$. Using the polynomials $h_{1}(m, s)$ we can rewrite c_{1} as

$$
\begin{equation*}
c_{1}=\sum_{m=0}^{N-1} \sum_{s=0}^{N-1} h_{1}(m, s) . \tag{A4}
\end{equation*}
$$

Similarly, each term of c_{2} corresponds uniquely to a graph containing exactly two empty sides and two nodes that do not start an arrow. Each term of c_{2} is thus a product of the form

$$
\begin{equation*}
h_{2}(m, s ; n, t) \equiv \prod_{j=m+1}^{s-1} k_{j}^{+} \prod_{j=s+1}^{n} k_{j}^{-} \prod_{j=n+1}^{t-1} k_{j}^{+} \prod_{j=t+1}^{m} k_{j}^{-}, \tag{A5}
\end{equation*}
$$

where the order of the nodes m, s, n, and t on the polygon must satisfy the following condition: if we start moving along the nodes of the polygon in the clockwise direction, then from m we must first go to s, then to $n \neq m$, then to t, and finally return to m. This guarantees that each polynomial $h_{2}(m, s ; n, t)$ is actually a product of exactly $N-2$ transition rates $k_{j}^{ \pm}$.

The polynomials $w_{1}^{0}, w_{1}^{+}, w_{2}^{0}$, and w_{2}^{+}satisfy the following relations:

$$
\begin{gather*}
w_{1}^{0}=\sum_{m=0}^{N-1} h_{1}(m, 0) \tag{A6}\\
k_{0}^{+} w_{1}^{+}=\sum_{m=1}^{N-1} \sum_{s=1}^{m} h_{1}(m, s) \tag{A7}\\
w_{2}^{0}=\sum_{m=1}^{N-1} \sum_{n=0}^{m-1} \sum_{t=n+1}^{m} h_{2}(m, 0 ; n, t) \tag{A8}\\
k_{0}^{+} w_{2}^{+}=\sum_{m=2}^{N-1} \sum_{n=1}^{m-1} \sum_{s=1}^{n} \sum_{t=n+1}^{m} h_{2}(m, s ; n, t) \tag{A9}
\end{gather*}
$$

Each term of the product $k_{0}^{+} w_{1}^{0} w_{2}^{+}$is thus of the form $h_{1}(l, 0) h_{2}(m, s ; n, t)$, where $1 \leqslant s \leqslant n<t \leqslant m \leqslant N-1$ and 0 $\leqslant l \leqslant N-1$. Similarly, each term of the product $k_{0}^{+} w_{2}^{0} w_{1}^{+}$is
of the form $h_{1}(l, s) h_{2}(m, 0 ; n, t)$, where $0 \leqslant n<t \leqslant m \leqslant N-1$ and $0 \leqslant l \leqslant N-1$. Using the explicit form of h_{1} and h_{2} [see Eqs. (A1) and (A5)], one can verify that

$$
h_{1}(l, 0) h_{2}(m, s ; n, t)= \begin{cases}h_{1}(n, s) h_{2}(m, 0 ; l, t), & l<t, \tag{A10}\\ h_{1}(l, s) h_{2}(m, 0 ; n, t), & l \geqslant t .\end{cases}
$$

We thus see that each term of $k_{0}^{+} w_{1}^{0} w_{2}^{+}$[the left-hand side (LHS), of Eq. (A10)] can be mapped onto a term of $k_{0}^{+} w_{2}^{0} w_{1}^{+}$ [RHS of Eq. (A10)]. This mapping is an injection: if it maps some $\quad h_{1}\left(x_{1}, 0\right) h_{2}\left(x_{2}, x_{3} ; x_{4}, x_{5}\right) \quad$ on some $h_{1}(l, s) h_{2}(m, 0 ; n, t)$, then evidently $x_{2}=m, x_{3}=s, x_{5}=t$, and for $l \geqslant t$ there is $x_{1}=l, x_{4}=n$, while for $l<t$ there is $x_{1}=n, x_{4}=l$. In each case x_{1}, \ldots, x_{5} can be determined uniquely if l, s, m, n, and t are known.

The fact that Eq. (A10) defines an injection implies that $k_{0}^{+} w_{1}^{0} w_{2}^{+} \leqslant k_{0}^{+} w_{2}^{0} w_{1}^{+}$, which completes the proof of Eq. (25).
[1] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, MA, 2001).
[2] F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69, 1269 (1997).
[3] M.E. Fisher and A.B. Kolomeisky, Physica A 274, 241 (1999).
[4] M.E. Fisher and A.B. Kolomeisky, Proc. Natl. Acad. Sci. U.S.A. 96, 6597 (1999).
[5] A.B. Kolomeisky and M.E. Fisher, Physica A 279, 1 (2000).
[6] M.E. Fisher and A.B. Kolomeisky, Proc. Natl. Acad. Sci. U.S.A. 98, 7748 (2001).
[7] C.M. Coppin, D.W. Pierce, L. Hsu, and R.D. Vale, Proc. Natl. Acad. Sci. U.S.A. 94, 8539 (1997).
[8] K. Visscher, M.J. Schnitzer, and S.M. Block, Nature (London) 400, 184 (1999).
[9] Z. Koza, Physica A 285, 176 (2000).
[10] K. Svoboda, P.P. Mitra, and S.M. Block, Proc. Natl. Acad. Sci.
U.S.A. 91, 11782 (1994).
[11] G. Oster and H. Wang, Biochim. Biophys. Acta 1458, 482 (2000).
[12] H. Quian, J. Math. Chem. 27, 219 (2000).
[13] B. Derrida, J. Stat. Phys. 31, 433 (1983).
[14] I. Claes and C.Van den Broeck, J. Stat. Phys. 70, 1215 (1993).
[15] Z. Koza, J. Phys. A 32, 7637 (1999).
[16] L. Schimansky-Geier, M. Kschischo, and T. Fricke, Phys. Rev. Lett. 79, 3335 (1997).
[17] H. Ambaye and K.W. Kehr, Physica A 267, 111 (1999).
[18] R. Lipowsky, Phys. Rev. Lett. 85, 4401 (2000).
[19] A.B. Kolomeisky and M.E. Fisher, J. Chem. Phys. 113, 10867 (2000).
[20] M. Rief, R.S. Rock, A.D. Mehta, M.S. Mooseker, R.E. Cheney, and J.A. Spudich, Proc. Natl. Acad. Sci. U.S.A. 97, 9482 (2000).

[^0]: *Electronic address: zkoza@ift.uni.wroc.pl

