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Maximal force exerted by a molecular motor
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We consider a particle diffusing in a one-dimensional periodic lattice with arbitrary transition rates between
nearest-neighbor sites. We show rigorously that the ratio of the drift veldcitythe diffusion coefficienD
has the upper bound\2d, whereN is the number of nodes in an elementary cell anhdenotes its length.
Applying this result to a model of a molecular motor introduced by Fisher and Kolomfskg. Natl. Acad.
Sci. USA96, 6597(1999] we show that the so called Einstein force, which sets the lower bound for the force
exerted by a molecular motor, is bounded from above lkyTN/d irrespective of the actual values of the jump
rates between internal states of the motor.
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[. INTRODUCTION Using this definition Fisher and Kolomeisk$,4] suggested
that for any system with transitions restricted to the nearest-
Molecular motors are complex proteins, e.g., kinesinsheighbor sites only
myosins, or dyneins, responsible for dynamical functions of
biological cells, including muscle contraction, intracellular Fo<2k TE ©
transport, and flagellar motion. Powered by hydrolysis of E=8
ATP (adenosine triphosphatehey move along complemen- ) _ )
tary protein fibers, which are made up of many identicalhich, using Eq(1), can be written as
monomers. Only microfibers comprised of polar monomers
. : ) -2N 2N
(e.g., of actin or tubulin can contribute to transport. The —— D<V=—D, (3)
tracks molecular motors move along are thus periodically d d
ggﬁ)udctilliteegi’z?.symmetrlc, and effectively one-d|men5|onaland proved |t rigorously fol_\l=2’., In our recer_lt pape{g] we
An important effort toward developing a general theory Ofreported a “computer-assisted” proof of th's. inequality for'
the force exerted by a single protein motor was made in =16. T_he purpose of our present paper is to prove this
series of recent papef8—6]. It is based on the assumption ypo'ghesus analytically for an and arbitrary values of
that the motion of a motor can be modeled as diffusion of & ansition rates. . :
particle in a one-dimensional lattice with periodic and asym- Equation(3) also sets a “?'a“"” betwedhand an experi-
metric transition rates. The lattice nodes correspond to dif_mentally r_n_easu_red quantity, the randomness2D/Vd
ferent internal states and locations of a kinesin on a micro[8’1o]' for it implies
tubule. A segment of a microtubule corresponds to an N=1/r. )
elementary cell of the lattice—we will denote its lengthdas
The number of sites in an elementary c8l],is equal to the  Thijs relation, which was originally derived only for unidirec-
number of different internal states in a full mechanochemicational, N-step sequential processd®], can be used to esti-
cycle of a motor. For kinesi=8 nm[1,7,8l and N=4  mate the minimal number of steps comprising a full mecha-
[3,4,6]. Transitions between lattice nodes are assumed taochemical cyclés].
constitute a Poisson process, so the time and displacement As can be readily verified, the inequalitg) turns into an
are, respectively, continuous and discrete variables. equality if the motor moves all the time in the same direction
For such a system one can construct several quantitiegnd all transition rates are of the same magnitftle We
approximating the force exerted by the moft8y4]. Here we  show that this condition is not only satisfactory, but also
will focus on the so called Einstein forég: . It is related to  necessary to tur®) into an equality. This result corresponds
the drift velocityV and the mobilityb of the motor through  to recent findings of Oster and Waiigl], who argue that
the formulaV=DbFg. Following the Einstein relation one rotary motors(e.g., F,; ATPase rotorsare most efficient in
hasb=D/kgT, whereD is the diffusion coefficient of the transducing the chemical energy of ATP hydrolysis into me-
motor, T denotes temperature, akg is the Boltzmann con- chanical work if the torque they generate is constant, i.e.,
stant. Thereford-¢ can be expressed simply 4] independent of the rotation angle. A similar result was also
obtained by Quiari12], who considered a continuous sto-
chastic model for molecular motors and showed that the en-
Fo—k TM 1) tropy production rate, or the dissipated heat, is minimal if the
e=kg . ! ! R "
D stochastic process is unidirectional and all transition rates are
of the same magnitude.
Finally, apart from having a direct application in the
*Electronic address: zkoza@ift.uni.wroc.pl theory of molecular motors, inequalit) is interestingper
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se for it implies that a nonvanishing drift in an arbitrary relations in Eq(3) implies the other one. Therefore we will
one-dimensional diffusive Poissonian system imposes eestrict our consideration to the case=0 and prove only

lower bound for the dispersion. that

As relation(3) is supposed to be valid for any peridd
and arbitrary choice of transition rates, to prove it one should V< ﬂD )
be able to represent and D as functions of the transition d

rates. Once such a representation has been found, the task of

proving inequality(3) reduces to a purely algebraic problem. In accordance with the findings of RéfL5],
General methods of expressikgandD in a nonequilibrium
system were found by Derridd 3] and Claes and Van den V= d(P,—P-)
Broeck[14]. One problem with these solutions is that they Cy

are relatively complex and we did not find a way to employ

them to prove(3) for arbitrary N. b d?(P,+P_)—2c,V?

: C)

In our recent papdrl5] we proposed a different approach, 2¢,
and using it we were able to expregsandD in terms of a
few multivariate polynomials such that each of their termswhere
can be represented as a directed griggdhAs we shall see, No1 No1
this representation turns out to be crucial to our proof, as it _ N _ .
enables one to reduce the original problem to a graph- P.= 11:[0 ki, P-= ]1:[0 K
counting one.

The paper is organized as follows. In Sec. Il we present andc,,c, are polynomials given by
mathematical definition of the model. Section Il contains the
proof of Eq.(3), and Sec. IV is devoted to the discussion of . _
our results. Finally, in the Appendix we clarify some techni- &= 2 L1 (kp)m(k) ™ on({y; v D,

cal details of the proof. (o Wy ™07

(10

11)

N—-1

(12

II. MODEL where
We consider a one-dimensional lattice with its sites lo- Ymei0,1, (13

cated atx,, ne Z. At time t=0 we put a particle at sitg,

=0. The particle can then jump between the nearestte{1,2}, and ¢|({yj+},{yj_})=0 if at least one of the fol-

neighbor lattice sites. Transitions are assumed to represeni@wing conditions is satisfied:

continuoug(Poisson process in time governed by the master

. N—-1
t
equation S (vt v #N-1, (14)
P(nt) B . m=0
P =k _,P(n—1t)+k,.;P(n+1t)—(k, L
Ym=Ym=1, 3Am, (15
+k;)P(n,t), 5 _
P © Vo Va1 3Am (19

whereP(n,t) denotes the probability of finding the particle i N L ) N B

at sitex, at timet and k;; =0 are the(constant in timg otherwise ({7 },{7; })=1. The functions/,({; },{7; })

transition rates from a sit&, to x,.,. We assume that the are a type of characteristic function that eliminates from Eq.
n ntl-

system is periodic in space with a peribd=1 and a lattice (12 any combination of exponentg, which does not sat-

constantd>0. i.e.. for each there is isfy conditions(14)—(16). It can be shown that; consists of
T N2 and c, of N?(N?—1)/12 terms, so even for moderate
Ko =Kpins  Kn=Knin (6)  values ofN these polynomials are quite complicated.
Our strategy is simple. We shall consider the subset of the
Xnin—Xn=d. (7)  parameter spacék, , ... Ky_1.Kg, - - - Ky_q} for which

) _the velocityV assumes a given value and try to find in it the
We do not demand that the distances between consecutive

- o~ — -~ ~+ ~+ - - .
lattice sitesx,..1—X,, should be all equal to each other. Our point (l.(o P ’k’\.‘—l’ko + -« - Ky—y) at which t_he diffusion
- . n _ coefficientD attains the smallest value. We will show that at
goal is to prove Eq(3) for any choice ok, andk,

such a poinﬂj‘=0 for all j. It will then suffice to prove Eq.
(8) only for this restricted parameter subspace, and this can
be carried out explicitly.

The diffusion coefficientD remains unchanged and the  First of all notice that, ikj*=0 for somgj, thenV=<0 and
drift velocity V changes its sign under the mirror-reflection Eq. (8) is satisfied trivially, for the diffusion constam is
symmetry corresponding to exchangihp with kZ;. Using  nonnegative by definition. Henceforth we shall thus restrict
this natural symmetry we thus conclude that each of the twour consideration to the case

[ll. PROOF OF EQ. (3)
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kj+>0, Vij. a7

Suppose, for a while, that except ky andk, , all other
transition rates are fixed. Definitio($2) and(13) imply that
¢, andc, are linear ink, andkg , while Eq.(15) ensures
that none of their terms contains bdtj andkg . In other
words,

c1=wj kg +wi kg +w?, (18

Co=wj; kg +w, kg +w3, (19

wherew, =dc, /dk, andWPEc,|k§=0 are some multivariate
polynomials ink; , ... Ky_1,K;, ... Ky_1, independent
of k, andk, (1=1,2). For example, foN=3 there isw;
=k, +ki +ki, wy=k,+ki+ki, wi=kik, +kik;
+kiky , wy =w, =1, andwy=k; +k, +k; +k; . Condi-
tion (17) guarantees that

c;>0, wi>0. (20)

Let us now varyk; and k, in such a way that
V(kq ,kg)=const. This means that

dv= N dkg + N dkg =0 (21)
kg kg ’
which, in turn, implies
io| aD v oD oV de. (22
kg kg okg  okg ok '

Using Egs.(9), (18), and(20) we find thatgV/dkg >0 and

c1

d3

D 9V 9D oV

_ w0p’ p’ 2 ’ —.,0
=w;P.P_(c))*+[PL(w;w
gky ki k¢ akg v D7 LP W W

—wiw, )+ P’ (w; w)
—wiw;)](P.—P_)% (23

where P, =II{"'k =P, /k§ and P.=TI)"7'k . In the
Appendix we show that

Wy Wo=wiw; (24
w; wo=wiw; . (25)
Consequently,
dD
—=0. (26)
dko

Therefore, for anykg ,k, >0 there existsj >0 such that
V(kg ki) =V(0k$) andD(ky ki )=D(0KY).
Applying the same reasoning in turn for sites
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transition rates(y , ... Ky_1.Kg - . . Ky_; there must ex-
ist non-negative numbets; , . .. ky_, such that
V(kg, ... kg, o ki )=V, ... kg, ... Ki_1),
DKy, ... Ky .. Ky_)=D(0,... kS, ... ki 1)

It thus suffices to prove Ed8) only in a particular case
where allk;” vanish. Assuming; =0,V j we arrive at

1
c,=P —, 2
NP 27
5 N-2 N-1 1 (28)
C = 1
R W e

andP_=0. Finally, by using Eqs(9) and (10) this implies

2N 2Nc,P, —(N—=1)(c,)?
v—No_gp, 2Py —( )(Cq1)
d (Cl)3
N 1 2
=s| 2N —(N—1 —
osj<lI< k;rkl+ ( )<J20 kr) l

(29

where we used a shorthand notatead(P, /c;)3>0. Not
only does this inequality complete the proof of E8), but it
also tells us tha¥//D assumes its maximal valuéN2d if and
only if all k; vanish and aIIkJ-+ are positive and equal to
each other.

IV. CONCLUSIONS

We have rigorously proved that the maximal value of the
Einstein forceFg is 2kgTN/d, whereN is the number of
distinct internal stategconformationg of a motor protein in
a full mechanochemical cyclé, denotes the segment length
of a microtubule,T is the temperature, arid; is the Boltz-
mann constant. We showed that this maximal value is at-
tained if and only if all transitions are unidirectional and of
the same magnitude. We also showed that the randomness
satisfies the relation>1/N.

Although our approach is valid for any value Mfand an
arbitrary choice of transition rates, it still refers to a simpli-
fied situation. First, we assumed that the motion of a motor
protein can be reduced to diffusion of a Brownian particle on
a linear chain of lattice nodes, and other topologies deserve
at least equal attentidr2,16—19. Second, we assumed that
the transitions constitute a Poisson process. Although this
hypothesis is confirmed by recent experiments on myosin
[20], it is well known that transition rates with other prob-
ability density functions may lead to completely different
upper bounds foFg [3-6,19. Third, our formula depends
on N, which is not known exactly. Finally, we consider a

=0, ... ,N—1 we conclude that for any particular choice of single motor, while many real protein motors work collec-
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7 0 Similarly, a counterclockwise arrow starting at a ngdeor-
responding tdk; ) must be followed by either an empty side
or a side occupied by another counterclockwise arrow

6 1 (kj+1). Therefore in each term af;, 1=1,2, there are ex-
actly | empty bonds interlaced with exactlynodes that are
not the source of an arrow. Consequently, each teray aé
uniquely given by specifying two nodes: one, say such
that the side ifi,m+1) is empty and the other one, say

5 2 which is not a source of an arrow. In the example depicted in
Fig. 1, m=6 ands=3. We will denote such a term by
A 3 h;(m,s). Clearly,
FIG. 1. Th h ding t tertn,(6,3) pilie i
. L e graph corresponding to a termy(6, _ R— .
—k kT ki K kokgkd of ¢; (N=8). hl(m-5)=j=1ll Ki ].=111 Kj (A1)

tively [1,2]. Nevertheless, the force calculated using all thesavherell’ denotes a special product defined so as to take into
approximations (4.3 pN) agrees quite well with the experi-account the periodic nature of a polygon:
mental value of the stalling forcEg for kinesin (different
experimental techniques yielddei~4-8 pN|[1]). Further i - .
work is, of course, required to clarify the relevance of the [I' k=1 if m+1=n(mod N); (A2)
above-mentioned problems.

Last, but not least, our proof implies that a nonvanishingotherwise,
drift in an arbitrary one-dimensional diffusive Poissonian
system imposes the lower bound for the dispersion.
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where Osn,m=<N-1. In other words, for any functiom

APPENDIX: PROOF OF EQS. (24) AND (25) defined on the nodes of the polygdlh',?lnf(j) is a product

_ i . _ of all f(j) associated with nodgdying between nodes and
~ The mirror-reflection symmetry, as described at the beging, in the clockwise direction: however, if this would mean
ning of Sec. Il, maps Ed24) onto Eq.(25) and vice versa. hat all nodes should be taken into this product, then
Therefore, it suffices to prove only one of Fhem, say.(egi). n ’,m:nf(j)E 1. Thus, for example,  hy(0,0)
To prove Eq.(25) we need a more detailed description of kKK hy(0,1)=k; k3 - - -ky_ ks , andhy(0,2)
: . Ry Ko Ry 1)Ko Kz " Kn-1K0 » )
the dependence of polynomiats andc, on the transition =k1+k3_k;- ~-ky_ 1Ko . Using the polynomialéi,(m,s) we

ratesk:", j=0,... N—1. A convenient description is pro- :

i
vided by a graphical representatif®], where each term of can rewritec, as

L ~

¢, 1=1,2, which is of the forndI}5'(k;) % (k") , corre- N"1N-1
sponds to an oriented graph spanned dregula) polygon C1= 2_0 ZO hi(m,s). (A4)
with N nodes labeled,Q .. ,N—1. The graph is constructed mes s
in such a way that whenever, =1 we draw an arrow from Similarly, each term ofc, corresponds uniquely to a

nodej to j—1(modN), and whenevery[ =1 we draw an  graph containing exactly two empty sides and two nodes that

arrow fromj to j+1(modN). Conditions(13)—(16) imply  do not start an arrow. Each termof is thus a product of the
that there is a one-to-one correspondence between the terfasm

?f”q 1= 1,2|, anéj )the set o{latl)l glrapgs dra]}wrl: acc?rdin% t)o the . - -
ollowing rules: (1) Draw all butl sides of the polygon(2 _
replacegeach drawn side with an arrow in such: axgay that for 2(msinty= T1" k" 117 & I1" &' II" k7,
each node there is at most one arrow starting at it. The first jmmel msel o SEne e (A5)
step is associated with conditio(s3), (14), and(16), while
the second step is related to conditid’b). An example of a  where the order of the nodes, s, n, andt on the polygon
graph corresponding to a terkg k; kj k, ks ks k; of c; for  must satisfy the following condition: if we start moving
N=8 is given in Fig. 1. along the nodes of the polygon in the clockwise direction,
Note that, by definition, if an arrow is drawn along a sidethen fromm we must first go tcs, then ton#m, then tot,
(j,J+1) in a clockwise directionwhich corresponds to a and finally return tan. This guarantees that each polynomial
term kj+), the preceding sidej ¢ 1,j) must be either empty h,(m,s;n,t) is actually a product of exactlij—2 transition
or occupied by another arrow pointing clockwisbﬂl). rateskji.

s—1
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The polynomialsv?, w; , w9, andw; satisfy the follow-  of the formhy(I,s)h,(m,0;n,t), where Gsn<t<m<N-1
ing relations: and 0<I<N-1. Using the explicit form oh; andh, [see
Egs.(Al) and(A5)], one can verify that

N—-1
wi= 2 hy(m,0), (A6)
m=0 O hi(n,s)h,(m,0;1,t), [1<t,
NC1 m LOR(MSAD=1 P Shymomno, 1=t
kgwi =2 2 hy(ms), (A7) (AL0)
m=1s=1
N-1m-1 m We thus see that each termlgfwiw, [the left-hand side
wi= > > hy(m,0in,t), (A8)  (LHS), of Eq.(A10)] can be mapped onto a termigfwow;
m=1 n=0 t=n+1 [RHS of Eg.(A10)]. This mapping is an injection: if it maps
Nelmel n m ﬁo(rre)h ( h(:)L(Xl,)O)hﬁ(XZ,XS';ng'XF) on some
o+ . 1 ,S 2 m, ;n,t y then evi entyX2=m, X3:S, X5:t,
koW, _mZ‘z =4 521 t;n‘il ho(m,s;n,t). (A9) and for =t there isx;=I, x4=n, while for I<t there is
X1=n, X4=1. In each case&, ... X5 can be determined
Each term of the produckjwjw; is thus of the form uniquely ifl, s, m, n, andt are known.
h;(1,0)h,(m,s;n,t), where kssn<tsm<N-1 and 0 The fact that Eq(A10) defines an injection implies that

<I<N-1. Similarly, each term of the produkf wow; is kg ww, <k wdw; , which completes the proof of E(R5).
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